
SCIENCE SHARING 2026

Primary 3 Meet-and-Greet

BUKIT PANJANG PRIMARY SCHOOL • FUTURE LEADERS, CONCERNED CITIZENS

Science Curriculum Framework and 2023 Primary Science Syllabus

Goals

Science for Life and Society

Vision - 3INs

Inspire
Inquire
Innovate

Three Domains

Core Ideas
Practices
Values, Ethics and Attitudes

Stakeholders

Students as Inquirers
Teachers & Partners as Facilitators

Science Curriculum Framework and 2023 Primary Science Syllabus

Curiosity

Creativity

Integrity

Open-mindedness

Resilience

Responsibility

Healthy scepticism

Science Curriculum Framework and 2023 Primary Science Syllabus

Core Ideas are organised as **Themes** in Primary Science

Diversity . Cycles . Systems . Interactions . Energy				
Only in P3	P3 4 topics	P4 5 topics	P5 5 topics	P6 4 topics

P3	P4	P5	P6
<ul style="list-style-type: none"> • Diversity of living and non-living things / Classification of living things • Diversity of materials • Properties of magnets / Making and Using magnets • Life cycles of plants & animals 	<ul style="list-style-type: none"> • Plant System • Human Systems • Matter • Light / Shadows • Heat / Effects of Heat 	<ul style="list-style-type: none"> • Plant transport system • The Human Respiratory & Circulatory System • Electrical System / Simple Series & Parallel Electric circuits • Cycles in water • Reproduction in animal and plants 	<ul style="list-style-type: none"> • Photosynthesis • Energy Conversation • Interaction of Forces • Interactions with the environment / Surviving in the Environment

3C Pedagogical Framework

3C pedagogical framework helps to design the students' learning experience for each key idea

Stages	What	How
Capture ideas and interest	What are some of your student's <u>prior knowledge</u> ? What is the <u>next concept</u> that students are learning?	How can we <u>elicit</u> students' prior knowledge? How can we <u>generate</u> students' <u>interest</u> for learning the next concept?
Construct understanding	What concepts do students have to learn? Are there <u>content gaps</u> we have to bridge?	How can we teach the concepts? How can we <u>bridge</u> the content gaps?
Consolidate learning	What is the <u>key idea</u> in this lesson?	How can we help students <u>apply</u> what they have learnt?

Science Curriculum Framework and 2023 Primary Science Syllabus

Practices - Ways of thinking and doing		By the end of Primary 4, students should be able to:	By the end of Primary 6, students should be able to:
Posing questions and defining problems	This involves asking questions to make sense of the world (themselves and the environment) around them.	<ul style="list-style-type: none"> Ask questions out of curiosity or to deepen understanding. Ask questions which can be investigated. 	
Designing investigations	This involves formulating questions or hypotheses and designing fair tests to find out answers to the questions or to verify the hypotheses.	<ul style="list-style-type: none"> Recognise a fair test (changed/unchanged variables). 	<ul style="list-style-type: none"> Design a fair test (changed/unchanged variables).
Conducting investigations and testing solutions	This involves conducting investigations to gather data through making observations using our senses or instruments. This also involves knowing the functions and limitations of various apparatus, developing the ability to select and handle them appropriately for various tasks.	<ul style="list-style-type: none"> Use senses, apparatus and equipment to gather data. Investigate to find out answers to questions (guided investigations). Record and/or compare observations/data with suggested scaffolding. 	<ul style="list-style-type: none"> Use senses and select appropriate apparatus and equipment to gather data. Investigate to find out answers to questions (guided and open investigations). Record and/or compare observations/data using a variety of forms e.g., notes, drawings and charts.
Analysing and interpreting data	This involves identifying and explaining the parts of objects, information (presented in different forms), as well as the patterns and relationships between these parts.	<ul style="list-style-type: none"> Simple analysis of data and information in representations (e.g., tables, bar and line graphs, charts and diagrams) to infer patterns and relationships or explain findings. 	<ul style="list-style-type: none"> Analysis of data and information in representations (e.g., tables, bar and line graphs, charts and diagrams) to infer patterns and relationships or explain findings.

Science Curriculum Framework and 2023 Primary Science Syllabus

Practices - Ways of thinking and doing		By the end of Primary 4, students should be able to:	By the end of Primary 6, students should be able to:
Communicating, evaluating and defending ideas with evidence	This involves receiving and presenting information and ideas in various forms. This also involves assessing the reasonableness, accuracy and quality of information and ideas.	<ul style="list-style-type: none"> Communicate (e.g., written, verbal, pictorial, tabular or graphical) clear explanation and reasoning. Seek clarification to deepen understanding. 	
Making informed decisions and taking responsible actions	This involves establishing and applying criteria to select from among seemingly equal alternatives. The process of establishing criteria involves consideration of the consequences and values.	<ul style="list-style-type: none"> State or select options based on appropriate criteria with reasons. 	
Using and developing models	This involves using multiple representations to describe, explain and predict phenomena.	<ul style="list-style-type: none"> Use multiple representations (e.g., pictures, charts, diagrams, tables, graphs) to explain concepts, describe and predict phenomena. 	
Constructing explanations and designing solutions	This involves generating ideas and justifying them to remedy or alter a problem situation.	<ul style="list-style-type: none"> Construct possible explanations and generate ideas. 	

Number of Science Periods Per Week

P3 and P4 Science	P5 and P6 Foundation Science	P5 and P6 Science
5	5	6

Three days of Science Per Week
SLS Science Assignments

Inspiring Science Textbook and Activity Book

Science File

- School Notes
- Worksheets
- Topical WS,
- Process Skills
- Concept Map
- Term Review

Nature Study

Weighted Assessment (WA)

- To assess students' understanding of science concepts, inquiry skills, and use of evidence to explain observations and draw conclusions.

WA1	WA2	WA3	EYE
40 marks	Practical 20 marks	40 marks	80 marks

Claim, Evidence, Reasoning (CER)

Why CER?

In Science, children do not just *give answers* — they learn to **think like young scientists** by:

- making a **Claim** (what they think),
- using **Evidence** (what they observe or find out),
- explaining their **Reasoning** (why the evidence supports the claim).

How You Can Support Your Child in Learning Science at Home Using Claim – Evidence – Reasoning (CER)

1. Support Your Child to Make a Claim

What you can do:

- Encourage your child to **say what they think will happen** or **what they think is true**.
- Accept ideas even if they are not fully correct yet.

Parent prompts:

- “What do you think will happen?”
- “Which one do you think is correct?”
- “What is your answer?”

You can support this thinking **without needing to know all the science content**.

How You Can Support Your Child in Learning Science at Home Using Claim – Evidence – Reasoning (CER)

2. Help Your Child Find Evidence

What you can do:

- Ask your child to **observe carefully** during simple activities.
- Encourage them to refer to:
 - what they saw,
 - what they measured,
 - what they read in their textbook or worksheet.

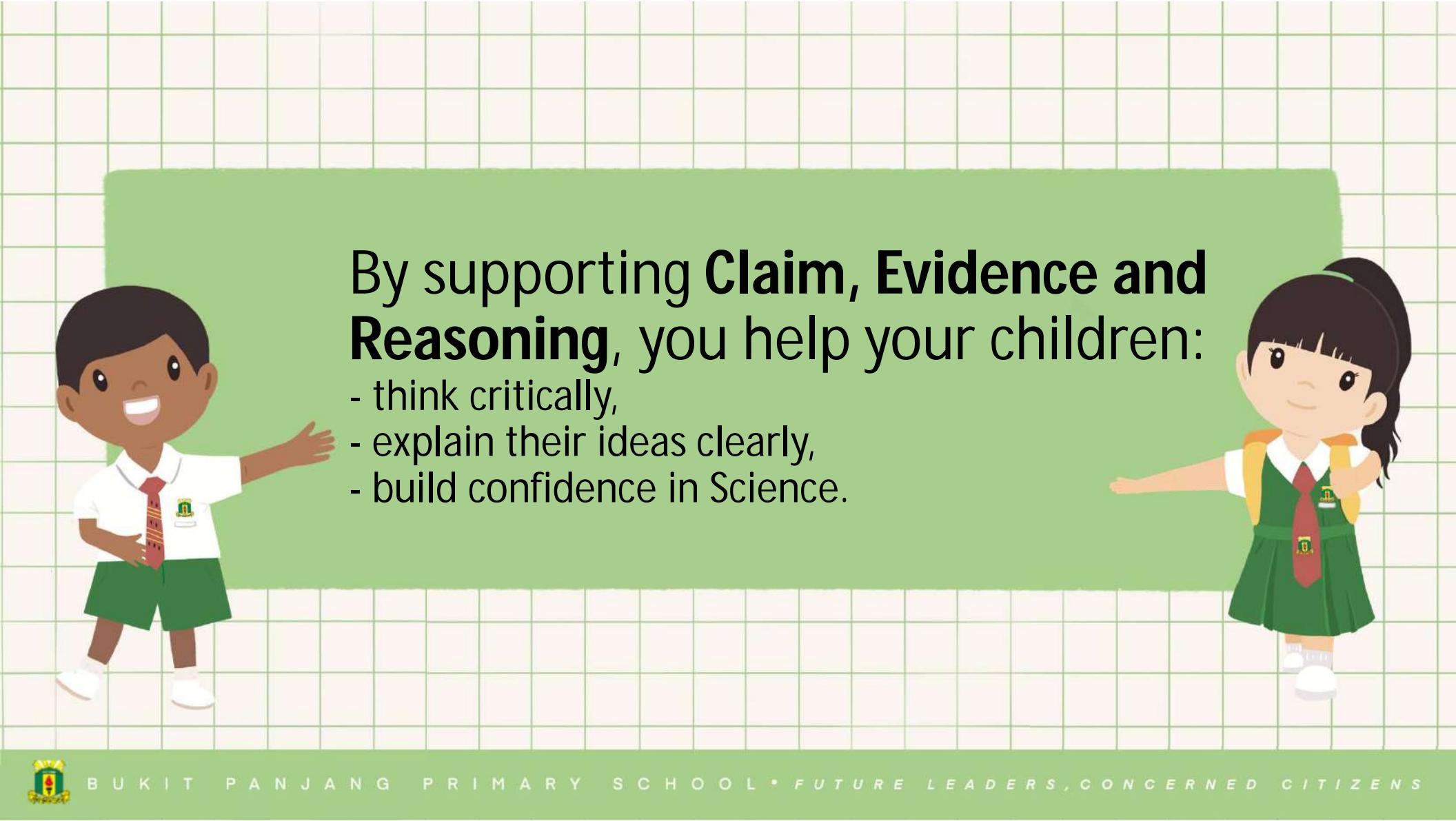
Parent prompts:

- “What did you observe?”
- “What did you notice when you tried it?”
- “What does your worksheet or textbook say?”
- “What makes you say that?”

How You Can Support Your Child in Learning Science at Home Using Claim – Evidence – Reasoning (CER)

3. Guide Your Child to Explain Their Reasoning

What you can do:


- Encourage your child to **connect the evidence to the claim**.
- Focus on explanation, not scientific terms.

• Parent prompts:

- “Why does that happen?”
- “How does your observation support your answer?”
- “Can you explain it in your own words?”

By supporting **Claim, Evidence and Reasoning**, you help your children:

- think critically,
- explain their ideas clearly,
- build confidence in Science.

Use Everyday Situations to Practise CER

Everyday Situation	Possible Claim	Evidence	Reasoning
Melting ice	Ice melts faster outside	Ice outside melted first	It is warmer outside
Cooking	Food cooks faster with a lid	Water boiled faster	Heat is trapped

What You Do NOT Need to Do

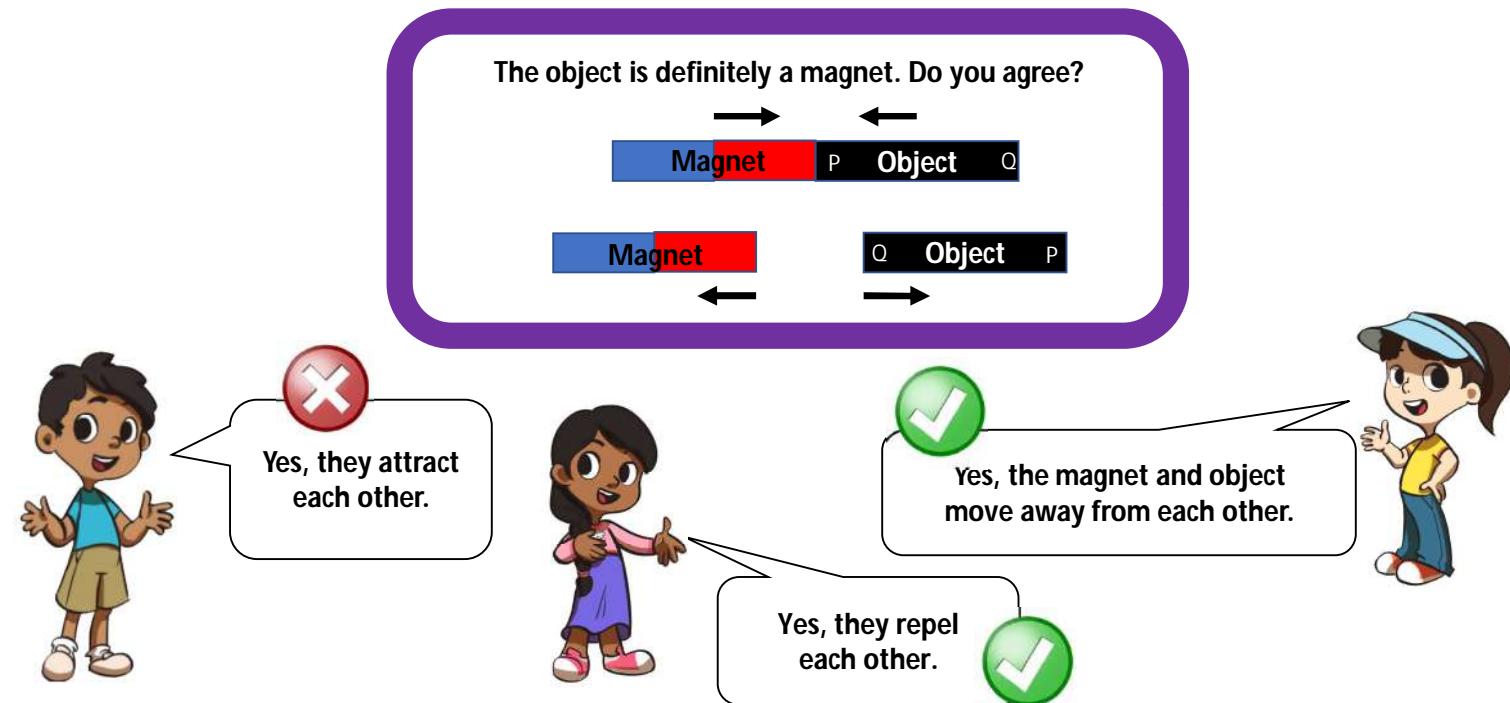
- ✓ You do not need to give the correct answer immediately
- ✓ You do not need scientific vocabulary
- ✓ You do not need to correct every mistake

Instead:

- ✓ listen,
- ✓ ask guiding questions,
- ✓ praise effort and thinking.

**“When parents ask good questions,
children learn to think like
scientists.”**

Conceptual Understanding in Primary Science: Examples and Applications


Conceptual Understanding in Primary Science:

- Students learn Science through understanding and applying concepts and skills in different contexts in an age-appropriate manner.
- The focus of learning Science is not on giving "standard answers" or keywords. Students can show their understanding by using their own words to explain clearly in the context of the question.
- Science is alive and its applications are all around us.

Example 1: Magnets

Concept:
Magnetic Repulsion

If the object is only attracted by a magnet, it may just be a magnetic material. There is insufficient evidence to conclude that the object is a magnet. The object is definitely a magnet only if it repels a magnet.

Example 1: Magnets

Applications in daily life

Magnets help us in our everyday life!

There are magnets in my toy!

Magnets help us to separate the magnetic materials in our rubbish too.

Yes, they are even used in Maglev trains!

Example 2: Heat

Concept:
Heat Conduction

The description of coldness being transferred is conceptually incorrect.
Heat is transferred from a warmer region to a colder region.
The air in jacket slows down heat flow away from the body
rather than prevents coldness from reaching us.

Example 2: Heat

Applications in daily life

Some objects are better conductors of heat so they allow heat to flow through faster than others. What are some examples of heat flow in our everyday life?

Heat flows through the metal pot quickly to cook our food.



Heat flows through the cardboard slowly so that I can hold my hot drink.

Some objects are made of both good and poor conductors of heat, such as the soup ladle.

I can hold the plastic handle safely when getting my hot soup.

Primary 3 Science Teachers

Class	Science Teacher	Class	Science Teacher
Compassion 1	Ms Aleefa	Compassion 4	Mdm Lalitha
Compassion 2	Mr Darius Kwan	Compassion 5	Mrs Phyllis Lim
Compassion 3	Ms Chan Meng Yin	Compassion 6	Ms Foong Kah Yin

Thank you

BUKIT PANJANG PRIMARY SCHOOL • FUTURE LEADERS, CONCERNED CITIZENS